DoE – Design of Experiment | Seminar | Schulung | Training

DoE – Design of Experiment | Seminar | Schulung | Training

Das Seminar Design of Experiment (DoE) vermittelt die effiziente Planung und Auswertung von Experimenten, um mit minimalem Aufwand maximale Informationen zu gewinnen. Inhalte: Versuchsdesigns, Varianzanalyse, Zielgrößenoptimierung, Regressionsmodelle, Praxisübungen mit Minitab. Ziel ist die direkte Anwendung zur Optimierung von Prozessen, Reduzierung von Kosten und Zeitaufwand.


Termine & Anmeldung

DoE – Design of Experiment | Seminar | Schulung | Training
10. Februar 2025 um 08:00 Uhr
bis 14. Februar 2025 um 17:00 Uhr
Stuttgart
noch 8 freie Plätze
DoE – Design of Experiment | Seminar | Schulung | Training
12. Mai 2025 um 08:00 Uhr
bis 16. Mai 2025 um 17:00 Uhr
Frankfurt am Main
noch 8 freie Plätze
DoE – Design of Experiment | Seminar | Schulung | Training
07. Juli 2025 um 08:00 Uhr
bis 11. Juli 2025 um 17:00 Uhr
Stuttgart
noch 8 freie Plätze
DoE – Design of Experiment | Seminar | Schulung | Training
13. Oktober 2025 um 08:00 Uhr
bis 17. Oktober 2025 um 17:00 Uhr
Frankfurt am Main
noch 8 freie Plätze
DoE – Design of Experiment | Seminar | Schulung | Training
17. November 2025 um 08:00 Uhr
bis 21. November 2025 um 17:00 Uhr
Stuttgart
noch 8 freie Plätze

Kein passender Termin dabei? Als registrierter Nutzer kannst Du Dich über neue Termine benachrichtigen lassen.

Veranstalter Quality Services & Wissen GmbH - Carmen Weber
Preis 1.848,00 € (zzgl. 19% MwSt.)
Dauer 40 Stunden
Kategorie Seminare und Weiterbildung
Zielgruppen Materialwirtschaft und Logistik, Forschung und Entwicklung, Produktmanagement, Prozessplanung, Qualitätsmanagement, Produktion, Projektmanagement


Beschreibung

DoE - Design of Experiment | Seminar | Schulung | Training

Die statistische Versuchsplanung (engl. Design of Experiment, DoE) ist ein Verfahren zur Planung von Versuchen, das damit rechnet, dass alle Versuchsergebnisse von unvermeidbaren Zufallsfehlern überlagert sind. Die Zufallsfehler werden mit statistischen Methoden nicht erst bei der Auswertung, sondern bereits bei der Versuchsplanung, also vor Beginn der oft langwierigen und kostenintensiven experimentellen Phase, berücksichtigt.

Die statistische Versuchsplanung (DoE) verfolgt dabei mehrere Ziele:

DoE ist so konzipiert, dass mit minimalem Versuchsaufwand maximale Informationen gewonnen werden. Kurz: Man will nur so viele Versuche wie notwendig durchführen, um alle benötigten Informationen zu erhalten. Es soll kein Versuch zu viel, aber auch keiner zu wenig durchgeführt werden. Zu viele Versuche bedeuten im Sinne der Optimierung Verschwendung von Ressourcen (Zeit, Material, Personal, etc.) und Erhöhung der Kosten. Es soll auch kein Versuch zu wenig durchgeführt werden, da dann das Risiko groß wird, dass die benötigten Informationen nicht ermittelt werden können.
DoE ist das einzige Verfahren, mit dem es möglich ist, Wechselwirkungen zu ermitteln.
Zudem ist DoE das einzige Verfahren, um zielgerichtet ein Optimum im System (Materialeigenschaften, Produktionsprozess, Ausbeute, Kosten, etc.) zu finden.

Nutzen der Statistischen Versuchsplanung (DoE)

Der Einsatz und die Verwendung der DoE Methodik erlauben es, alle Informationen über das System zu ermitteln, wobei dies in kürzerer Zeit als bei herkömmlichen Versuchsplanungen geschieht.
Der konsequente und fehlerfreie Einsatz der DoE Methodik führt in allen Fällen zur beträchtlichen Zeitersparnis von einigen Wochen bis einigen Monaten.

Aufwand der Statistischen Versuchsplanung (DoE)

Der Aufwand zur Durchführung von Versuchen mit der DoE-Methodik ist deutlich geringer als bei herkömmlichen Methoden, wie „Versuch und Irrtum“ oder OFAT („One factor at a time“).

Die 6 Stufen einer Versuchsplanung

Der Beginn einer jeden Versuchsplanung besteht in der exakten Definition und Beschreibung der Aufgabenstellung (Phase 1). Daran schließt sich die Analyse z. B. in Form einer detaillierten Prozess-Landkarte an (Phase 2). Ziel der Phase 2 ist es, alle Regelgrößen und Störgrößen, die das System beeinflussen, zu finden. In der Phase 3 werden die Einflussgrößen bewertet und auf ein sinnvolles Maß reduziert. Dabei wird vor allem die Ursache-Wirkungs-Matrix eingesetzt. In der Phase 3 wird auch der eigentliche Versuchsplan aufgestellt und bewertet. Erst nach dieser Planungsphase sind die Vorbereitungen für die experimentellen Arbeiten abgeschlossen. Die Phase 4 ist dann die eigentliche Versuchsdurchführung, die nach dem zuvor erstellten Plan durchzuführen ist. Daran schließt sich die Phase 5 mit der Auswertung der ermittelten Daten an (Output-Variablen, Co-Variablen, etc.). Hier kommen grafische Methoden und statistische Methoden zum Einsatz (Varianz- und Regressionsanalyse). Abschließend findet in der Phase 6 ein Wiederholungsversuch statt, um z. B. eine bestimmte gewünschte Materialeigenschaft zu reproduzieren und zu bestätigen.

In aller Regel sind die Phasen 1, 2, 3 und 5 die kürzesten und somit kostengünstigsten Phasen. Die experimentelle Phase 4 ist die Phase mit dem höchsten Aufwand (Zeit, Material, Ressourcen, Kosten, etc.). Eine gute Planung (Phasen 1 – 3) reduziert den Aufwand der Phase 4, verbunden mit deutlichen Kostenreduktionen.

Das Schulungskonzept

Das Schulungskonzept sieht vor, dass die Teilnehmer/-innen am Ende der Schulung die erlernten Werkzeuge direkt in ihren Projekten einsetzen können. Um dieses Ziel zu erreichen, gibt es zu jedem Thema/Werkzeug/Methodik:

ein Referat mit didaktisch ausgearbeiteten Power-Point-Folien,
mindestens ein Praxis-Beispiel, welches im Detail erklärt und mit der verwendeten Software vorgerechnet wird
und mindestens je ein Praxis-Beispiel, welches die Teilnehmer/-innen anschließend selber durchrechnen, wobei die Teilnehmer/-innen dabei methodisch und fachlich vom Trainer unterstützt werden.
Zur Zielerreichung – sofortiger und direkter Einsatz von DoE in den Projekten der Teilnehmer, um damit mehr Informationen unter gleichzeitiger Zeitersparnis zu gewinnen – ist ein Aufwand von 5 Tagen notwendig, wobei es sinnvoll sein kann, den gesamten Zeitraum in 2 Blöcke aufzuspalten. Dies wird in Vorgesprächen mit dem Kunden festgelegt.

Eine Reduktion des Aufwandes führt zu dem beträchtlichen Risiko, dass die Methoden ohne das notwendige Training unzureichend bis falsch eingesetzt oder die ermittelten Daten falsch ausgewertet werden. Beides ist nicht zielführend, weder aus der Sicht der Kunden noch aus unserer Sicht.

Seminarinhalte - Design of Experiments (DoE)
Tag 1:

  • Einführungen in DoE-Methodik
  • Einführung in die verwendete Software Minitab
  • Grundlagen der Statistik: Lage- und Streuungsmaße, Normalverteilung, Wahrscheinlichkeitsnetz
  • grafische Werkzeuge und Datenvisualisierung
  • Vertrauensbereiche
  • Hypothesentest, Signifikanz, p-Wert, scheinbare Effekte, wahre Effekte
  • Definition von Stör- und Regelgrößen
  • Effekte, Wechselwirkungen
  • Abgrenzung und Vorteile von DoE gegenüber anderen Methoden
  • Fallbeispiele DoE vs. OFAT: Maschinenparameter mit 3 Input-Variablen

Tag 2:

  • Varianzanalyse (ANOVA) mit mehreren unabhängigen Variablen
  • Regressionsanalyse
  • Vollfaktorielle Versuchspläne mit Blockbildung, Randomisierung
  • Residuenanalyse
  • Prognose
  • Standardfehler und mathematisches Modell
  • Wirkungsflächenversuchspläne (RSD = response surface design) zur Ermittlung nicht-linearer Effekte
  • Zentralpunkte
  • Orthogonalität, Drehbarkeit
  • Axialpunkte
  • Zielgrößenoptimierung
  • Kontur- und Wirkungsflächendiagramme
  • Statistische Bewertungskriterien: Bestimmtheitsmaße, PRESS-Wert

Tag 3:

  • Vertiefung der Zielgrößenoptimierung (Optimierung von 2 Zielgrößen gleichzeitig)
  • überlagertes Konturdiagramm
  • Vertrauens- und Prognosebereiche
  • teilfaktorielle Versuchspläne
  • mit/ohne Blockbildung
  • mit/ohne Zentralpunkte
  • Generator und Alias-Struktur
  • Vermengung und Auflösung
  • DoE zum Einsatz zur Reduzierung der Streuung in Prozessen
  • DoE: Methode des steilsten Anstieges
  • EVOP: Evolutionary Operations
  • DoE mit Covariablen (ANCOVA)
  • Beispiele aus der Praxis: Ausbeute chemischer Synthese-Reaktionen, Faserstärke von Polymerfasern; Therapieerfolge bei Medikamenten

Tag 4:

  • Prozess-Landkarte
  • Ursache-Wirkungs-Matrix
  • Ishikawa-Diagramme
  • Trendschärfe und Stichprobengröße
  • Umgang mit Ausreißern
  • Variablenvergleich nach Shainin
  • Trendanalyse
  • Beispiele aus der Praxis: Beschichtungen, Galvanik

Tag 5:

  • Statistische Versuchsplanung für Mischungen und Rezepturen
  • Grundlagen von Mischungsversuchsplänen
  • Simplex Design, Grad
  • Varianz-Inflationsfaktor (VIF)
  • Ergebnisspurendiagramm nach Cox
  • Zielgrößenoptimierung
  • Mischungsversuchspläne mit Beschränkungen
  • Pseudokomponenten
  • multiple Regressionsanalyse
  • Beispiele aus der Praxis: Dehnung von Polymerfasern, Lackformulierungen
  • Beispiele und Erweiterungsmöglichkeiten zur Vertiefung
  • Alle Stichworte und Werkzeuge werden mit aktuellen praxisnahen Beispielen geübt.
  • Bei Notwendigkeit oder auf Wunsch des Kunden kann das Seminar/Training mit weiteren wichtigen Themen erweitert werden:Umgang mit binären Output-Daten, Logistische Regressionsanalyse: 1 zusätzlicher Tag
  • Taguchi-Design für robuste Prozesse: 1 zusätzlicher Tag
  • Spezielle Versuchspläne: Screening-, Placket-Burman-, Box-Behnken-Versuchspläne, D-optimaler-Versuchsplan, Split-Plot-Design: 1 zusätzlicher Tag
  • Beratung zu aktuellen Anwendungsprojekten der Teilnehmer: 1 zusätzlicher Tag

Zielgruppe

Ingenieure, Meister aus Produktion, Laboranten, Entwickler, Chemiker, Physiker, Ingenieure aus Labor und Forschung, Mitarbeiter der Qualitätssicherung sowie alle Personen, die Interesse an dieser Methodik haben.

Dauer

5 Tage Präsenzveranstaltung / 8:00-17:00 Uhr

Voraussetzungen

Jeder Teilnehmer muss über ein Notebook mit der Software Microsoft® Excel ab 2016, MINITAB® ab R19 sowie Adobe® Reader® ab 7.0 verfügen. Eine Demoversion der Software kann direkt über MINITAB® bezogen werden.

Leistungsumfang

  • ausführliche Schulungsunterlagen in gedruckter Form
  • Fotodokumentation der vorgestellten Flipcharts & Workshops
  • Frühstück, Mittagessen, Naschwerk, Gebäck und Getränke während der Veranstaltung

Abschluss

Teilnahmebescheinigung nach der Präsenzveranstaltung

Kosten

€ 1.790,- pro Teilnehmer zzgl. gesetzl. MwSt.

Weitere Inhalte

Weitere Inhalte auf LeanEvents

LeanSimulation
LeanSimulation

Veränderungen in Geschäftsprozessen scheitern oft weniger an dem Verständnis von Prozessen oder der Akzeptanz der technischen Abläufe, als an den Menschen, die sich nicht mitgenommen fühlen.